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Abstract: Enhancing electric vehicle infrastructure by forecasting the availability of charging stations
can boost the attractiveness of electric vehicles. The transportation sector plays a crucial role in
battling climate change. The majority of available prediction algorithms either achieve poor accuracy
or predict the availability at certain points in time in the future. Both of these situations are not ideal
and may potentially hinder the model’s applicability to real-world situations. This paper provides a
new model for estimating the charging duration of charging events in real time, which may be used
to estimate the waiting time of users at fully occupied charging stations. First, the prediction is made
using the random forest regressor (RF), and then the prediction is enhanced utilizing the findings
of the RF model and real-time information of the currently occurring charging events. We compare
the proposed method with the RF model, which is the approach’s foundational model, and the best-
performing prediction model of the light gradient boosting machine (LightGBM). Here, we make use
of historical information of charging events gathered from 2079 charging stations across Germany’s
4602 fast-charging connectors. To reduce data bias, we specifically simulate prediction requests for
30% of the charging events with various characteristics that were not trained with the model. Overall,
the suggested method performs better than both the RF and the LightGBM. In addition, the model’s
structure is adaptable and can incorporate real-time information on charging events.

Keywords: electric vehicles; charging infrastructure; random forest (RF); ensemble learning

1. Introduction

Global warming has been a growing concern. In the Paris agreement, the participating
countries have agreed to hold “the increase in the global average temperature to well below
2 degree Celsius above pre-industrial levels and to pursue efforts to limit the temperature
increase to 1.5 degrees Celsius above pre-industrial levels” [1]. If the emission level exceeds
the level that governments agreed upon in this goal, the irreversible consequences would
threaten the global community. In order to adhere to this goal and based on the advice of
the German Advisory Council on the Environment (SRU), the German government plans to
reduce its greenhouse gas emissions by 95 percent less than the level of 1990, by 2050 [2]. To
achieve this, the economy must be completely decarbonized; burning fossil fuels for energy
must be minimized as much as feasible. All sectors are urged to reduce their greenhouse
gas emissions drastically [2].

In Germany, the transportation sector generates the third largest share of greenhouse
gas emissions after the energy and industry sectors [3]. Burning fossil fuels for cars is
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the lion’s share of transport-related emissions [2]. Since the German government aims to
achieve carbon-neutrality in transportation by 2050, the transport sector requires immediate
change [2].

A generally accepted solution of lowering CO2 emissions and combating climate
change is the use of electric vehicles (EVs). They are more eco-friendly substitutes for
conventional internal combustion engine vehicles and produce less air pollution [4].

As the increasing usage of EVs becomes more apparent from one year to another, the
imposed challenges need to be addressed. One of the unavoidable outcomes of the higher
number of EVs is that there is a need for available charging infrastructure and expansion of
charging infrastructures. This enables EV drivers to charge more comfortably and reduces
the waiting time [5,6]. The governments should continue to support the building of new
charging stations, specifically fast chargers, so that the on-road electrical vehicles can be
served [7]. To ensure that nobody is left behind, fair access to charging infrastructure
should be provided [7]. Fast charging was practically non-existent in 2013 [8], and has only
become a strong growth-domain in the last few years with more and more vehicles able
to draw such high powers [9]. While there has been an increase in the overall number of
charging stations, because of the high investment cost of fast chargers, the number of them
is still limited.

Another challenge is that the growing number of EVs requires the charging infras-
tructure to become more intelligent. The proportion of battery electric vehicles (BEVs) to
charging stations is continuing to increase [10]. This means day by day, there are more BEVs
that need to be charged at each station. This increasing trend requires smarter charging
infrastructure. The growing number of BEVs needing to be charged and the user’s lack
of information on station availability may cause drivers to wait in a queue for hours at a
station that was available minutes before [4].

To tackle the aforementioned problem, there are multiple approaches. A solution is
to vary prices so that the users would avoid long parking times, or encourage them to
use cheaper, less crowded stations [11,12]. Pricing techniques have been used in smart
charging, to prevent grid load peaks, by using the current energy prices and considering
varying usage between day and night and between weekdays [13,14].

Another approach to deal with this problem is to organize the limited existing charging
infrastructures to be able to charge fleets of EVs with limited infrastructure capacity [15–18].
For example, workplace charging stations that are responsible for charging a fleet of vehicles,
should intelligently prioritize charging specific EVs based on their properties, such as
parking time and their current state of charge [15,19]. Similarly, the limited resources need
to be assigned between different stations fairly [5,15,19].

Waiting time prediction at stations is another helpful, yet less taken approach. This
helps EV drivers to know if each station is available at each point in time, and if not, predict
the waiting time. Predicting charging station occupation status has several benefits. On
one hand, users can benefit from the comfort of knowing the occupation status of different
charging stations at their arrival time [4,5]. On the other hand, this enables charging station
operators to manage stations and mitigate the congestion at stations and decrease the user’s
waiting time by balancing the load of EVs on different stations. This paves the way to
create a real-time charging station recommendation system for EVs [4,20,21].

Additionally, it can facilitate the creation of applications that are directly integrated
into the user interface of the car or on the user’s smartphone to minimize the amount of
time the vehicle is left inactive when charging sessions are terminated. These applications
depend on precise short-term EV charging station waiting time forecasts for the next few
minutes to hours [4].

Reviewing recent publications that have used data-driven approaches to predict
the occupancy of EV charging stations, several approaches towards the aforementioned
challenges can be identified.

Zhiyan Yi et al. [22] demonstrate a deep learning model-based approach for forecasting
the demand for electric vehicle (EV) charging. The authors argue that for effective and
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economical planning and management of EV charging infrastructure, precise demand
forecasting is essential. The long short-term memory (LSTM) network is used in the
proposed deep learning model to identify patterns and connections between past charging
data and anticipated future charging demand. In order to increase the model’s accuracy,
the authors also employ a feature engineering technique to extract valuable features from
the charging data. Overall, this study adds to the expanding body of knowledge on EV
charging demand forecasts and shows how deep learning models have the potential to
increase the effectiveness of EV charging infrastructure.

Zhu et al. [23] present a comparative study of different deep learning approaches for
forecasting the electric vehicle (EV) charging load. The authors argue that accurate load
forecasting is essential for efficient and reliable operation of EV charging infrastructure.
The study compares several deep learning methods, including long short-term memory
(LSTM), convolutional neural network (CNN), and gated recurrent unit (GRU), for load
forecasting. The authors use real-world data from a public EV charging station in Singapore
to evaluate the performance of these methods. The results show that the LSTM model
outperforms the other models in terms of accuracy and robustness. However, the authors
note that the performance of the deep learning models is sensitive to the length of the
training data and the size of the input window.

In [4], the authors propose a hybrid LSTM neural network approach for multistep occu-
pancy prediction at EV charging stations. Their approach combines both the univariate and
multivariate LSTM models, along with a sliding window approach to capture the temporal
dependencies and fluctuations of occupancy patterns. They demonstrate that the proposed
hybrid LSTM model outperforms other baseline models in terms of prediction accuracy.

In [24], authors present a deep learning approach for long-term prediction of EV
charging station availability. They use a combination of LSTM and MLP models to predict
charging station availability over multiple time horizons. The authors show that their
approach outperforms traditional statistical models and other machine learning methods.

In [25], the authors propose an ensemble machine learning algorithm to predict the
charging duration time of EVs. They use the Shapley additive explanations method to
interpret the results of the ensemble model and to identify the most influential features
in the prediction. The proposed approach is shown to be effective in predicting charging
duration times for a large data set of EV charging sessions.

In this study, we extend ideas presented in the literature, particularly with regard to
ensemble learning models. Specifically, we aim to predict the short-term occupation status
of charging stations utilizing the random forest (RF) [26,27] ensemble learning method
for each station. As an alternative to the default RF regression procedure, which uses the
average of all trees’ predictions as the final prediction, a method is proposed in which we
use each estimator’s prediction combined with the real-time information of the current
status of the charging point to calculate the most probable charging duration. Thus, at
the moment a driver wishes to go to a station, the waiting time at the station until at least
one charging point within the station would be available may be estimated. This waiting
time estimate can also be produced for neighbouring stations, allowing drivers to select the
station with the shortest waiting time. The approach offered for this prediction is tested on
the real-world data of approximately 4600 fast-charging points in Germany.

With our study, we provide a proven methodology to enable accurate waiting time
prediction that can be computed with limited computational resources and with high speed.
This means that the developed algorithms can be employed in applications running on
smart phones or other small computers, thereby working towards the goal of simplifying
the user interface, as stated earlier. Due to the RF, the model is highly explainable, while
retaining accuracy by incorporating real-time information without the need to retrain
models for later time steps.

From these considerations, the following research question is distilled, which will
guide the content of the remaining paper:
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How can the machine learning tools be employed to efficiently predict how long a charge
point at an electric vehicle charging station will be occupied?

2. Materials and Methods

This section introduces the materials and methods used in this paper. Given its data-
driven approach, we first start by introducing the data used and subsequently focus on the
methodology applied.

2.1. Data

This section starts by outlining the data used. Subsequently, we show how this data
was transformed and divided in to a training and a test set.

2.1.1. Historical Data

The industry partners SMART/LAB and Hubject have provided the charging sta-
tion occupation to the ISEA as part of the BeNutz LaSA project (https://benutzlasa.de/,
accessed on 15 December 2022).

The data under consideration refer to 4602 fast-charging points all over the Germany.
The data set contains data from 1 January 2021 to 1 January 2022, for which the charging
stations status changes are available. The aspects of the historical data that will be used in
this work contains the following tables’ structure in the database:

1. Charging stations (referred to as Parks in the database) and their characteristics
(latitude, longitude, address).

2. Electric vehicle supply equipment (EVSEs) inside each charging station.
3. Outlet type and power of EVSEs (EVSE_connectors).
4. Status changes of EVSEs and the date and time of the availability and occupation

(EVSE_status).

Figure 1 shows the class diagram of the historical data tables and their relations in
the database.

Figure 1. The structure of the historical data. Each charging station may contain multiple EVSEs.
Similarly, for every entry in the EVSEs table, there can be one or more entries in the EVSE_connectors
table, as the power of the connector can change after a while to a higher-level connector. The
EVSE_status table keeps track of all status changes for all connectors in the EVSEs table. The status
of each charging point (EVSE) is either available or occupied, and the duration column shows the
duration that the charging connector has remained in the respective status in minutes.

https://benutzlasa.de/
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2.1.2. Feature Selection

Finding the ideal features for the machine learning model and eliminating unimportant
information that does not impact or improve the output of our model are the processes
involved in feature selection. The following is a list of the features that are used to forecast
how long charging events will last:

• Station location: We assume neighboring stations have a roughly comparable occu-
pancy. It is also a way of differentiating between different stations without using
individual IDs.

• Start time: EV users who start their charging sessions early in the morning may also
be rushing to get to work. Hence, how long drivers stay at a station varies in the early
morning or late evening.

• Month: The month of the charging event takes into account any seasonal influence.
• Power: Despite the fact that the data is limited to charging events of fast chargers, it is

anticipated that recharging at a connection with 95 kW of power takes longer than
one with 150 kW.

• Weekday and IsWeekend: The weekly average of station occupation is shown in
Figure 2 for various times of the day. The occupation average for various days of
the week is depicted in the right diagram. It is clear that the weekend’s (Saturday
and Sunday) occupation is both quite similar to each other and distinct from that of
the other days of the week during rush hours (after 10 AM to 16 PM). Additionally,
other days of the week have occupation distributions that are more comparable to one
another than the weekend, although other days nevertheless have distinct occupation
average distributions. The average occupancy rate for a day, divided by weekday, is
shown in Figure 2a. Figure 2b compares the average occupation on weekends and
other days of the week. The figures display normal charging behavior, including daily
cycles and higher usage before and after working hours on weekdays but lower usage
during working hours compared to weekends. Generally speaking, all stations follow
these trends.

• Occupation_avg: The average occupation, which is the output of the average week
model, is used as an input feature. The average week model is a basic model used
by Hecht et al. [5] as a baseline for the prediction of mid-term occupation status. It is
calculated by averaging the weekly usage of a charging station at an hourly resolution.
For this work, the averaging is carried out for each week of the year, considering 0
for available status and 1 for occupied. Equations (1) and (2) show the average week
model process, where d is the day of the week, h is the hour of the day and w stands
for the week number.

Xd,h,w with d ∈ {Mo, . . . , Su} ∧ h ∈ {0, . . . , 23} ∧ω ∈ {1, . . . , 53} (1)

Pi(d, h, w) =
∑ xi(d, h, w)

count(xi(d, h, w))
f or each i (2)

Including occupation_avg, alone improves prediction performance significantly.

2.1.3. Train–Test Split

For the purpose of evaluating a machine learning model, data is often split into a
training set and a test set. This was similarly accomplished in this study by using 30% of
the data for testing and the remaining 70% for model training.

We use the train_test_split() function to divide the data. The shuffle parameter of the
function divides the data randomly into training and test sets. Since the usage pattern
of charging stations may change over time, it can be ensured that the models have not
just been evaluated on very old or very recent events and that they are generalizable. For
example, the model that has a very good evaluation performance on the data of the initial
peak of the coronavirus cannot be trusted to have promising prediction results during
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the current situation. The model should be retrained frequently in order to adapt to the
changes in the charging infrastructure usage trends.
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Figure 2. Average distribution of occupations during a day, separated by weekday (a) and weekend
(b). It should be noted that the occupation average has been normalized between 0 and 1.

2.2. Methods

The procedure begins with selecting the suitable machine learning regressor model
and continues with explaining how the selected model is used and enhanced so that it
better corresponds to the real-time nature of the prediction. The steps involved in this
improvement are broken down into specific details.

2.2.1. Model Selection

The prediction of charging duration at charging stations from the features is a regres-
sion task. The PyCaret library is used to compare the performance of several models to
forecast the charging duration of charging events and to select the appropriate regression
models for the available data set. Eighteen different regression models have been eval-
uated and based on the evaluation results, which are depicted in Table 1; two ensemble
learning models of the light gradient boosting machine (LightGBM) and RF are proven
to have the best performance. Note that PyCaret’s compare_models() does not perform
hyperparameter tuning. This means that models may be subject to overfitting and that
performance gains are still possible. Nevertheless, the untuned models offer a fair ground
for comparison.
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Table 1. The output of PyCaret’s model comparison across the entire data set using 10-fold cross-
validation. The highlighted values correspond to the best score per metric.

Model MAE MSE RMSE R2 RMSLE MAPE TT (s)
lightgbm 21.0785 1886.5135 43.4328 0.1139 1.1626 3.9587 0.9570
rf 21.6954 1968.1448 44.3622 0.0756 1.0931 3.3667 58.5450
gbr 21.4235 1969.9957 44.3835 0.0747 1.1816 4.0781 22.8000
lr 21.9907 2067.0375 45.4635 0.0292 1.2245 4.4208 1.0910
ridge 21.9907 2067.0375 45.4635 0.0292 1.2245 4.4208 0.0630
lar 21.9907 2067.0375 45.4635 0.0292 1.2245 4.4208 0.0600
br 21.9906 2067.0375 45.4635 0.0292 1.2245 4.4208 0.1760
omp 21.9302 2089.3212 45.7078 0.0187 1.2245 4.3805 0.0600
en 22.3014 2110.1957 45.9356 0.0089 1.2419 4.5140 0.1830
lasso 22.3314 2114.2666 45.9799 0.0070 1.2427 4.5161 0.2090
llar 22.3500 2129.1706 46.1417 −0.0000 1.2428 4.4775 0.0700
dummy 22.3500 2129.1705 46.1417 −0.0000 1.2428 4.4775 0.0390
huber 20.8329 2144.1070 46.3031 −0.0070 1.1417 3.3577 2.2830
et 22.7264 2167.9740 46.5599 −0.0183 1.1494 3.2787 38.8670
par 24.1666 2243.1577 47.3323 −0.0537 1.2837 3.9364 0.2330
knn 23.9175 2270.0498 47.6439 −0.0662 1.1837 3.7279 159.2090
ada 37.0643 3298.0843 57.4235 −0.5492 1.5346 8.3365 4.8830
dt 28.4673 3802.5382 61.6637 −0.7862 1.3677 3.3913 1.8300

The columns of Table 1 represent common metrics used in regression issues. These are
mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), R-
squared (R2), root mean squared logarithmic error (RMSLE), and mean absolute percentage
error (MAPE). Since these are common machine learning metrics, a thorough discussion of
each is excluded at this time and the reader is directed to the paper’s Appendix A.

Of the analysed models, LightGBM and RF are consequently chosen as models for
further analysis. Since PyCaret does not perform a parameter optimization, this was sub-
sequently carried out. For RF, parameters were chosen manually to ensure accuracy while
avoiding overfitting as follows: criterion = ‘mse’, max_features = ‘auto’, min_samples_leaf = 8,
min_samples_split = 5. All other parameters were left in the default settings of sklearn. For the
LightGBM, a grid-search for hyperparameter tuning was performed for the key parameters
num_leaves, max_depth, and learning_rate. The resulting values were learning_rate = 0.1,
max_depth = 60, and num_leaves = 120. All other parameters were again left as default.

2.2.2. Prediction

The approach is to provide a technique for improving the model by making use of the
real-time nature of the task and including some new information into the model. To improve
the prediction, it is intended to leverage the individual inducers of ensemble models as
well as the readily available real-time information on how long the EVSE in the target
charging station has already been occupied. The proposed prediction enhancement method
is suitable for the parallel ensemble model category, hence the RF model is used. After
detailed explanation of the method, it will be made clear why the sequential category of
ensemble models is not appropriate for the improvement that is being provided. However,
as the LightGBM model performed better than the base RF model, we also made the
prediction using LightGBM to show that the suggested fine-tuned RF method works better
than the promising LightGBM.

An iterative, multi-step technique is used for the prediction. The prediction algorithm
is summarized in the activity diagram in Figure 3. The algorithm always bases its prediction
on a particular charging station. Additionally, the algorithm forecasts charging durations
for each EVSE separately. A charging station is typically occupied if all of the EVSEs inside
of it are being used.

The model forecasts how long various EVSEs sessions will take to charge inside the
desired charging station. The remaining duration of the occupancy of each EVSE at the
time of prediction is important since it determines how long a user must wait to begin
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charging at the station. In conclusion, the prediction system determines how long each
station’s EVSEs will take to charge based on real-time data from those units. The algorithm
then incorporates each individual EVSE’s prediction into the final prediction.

Train RF Model on training data

Request for availability of a charging
station

Exist available
EVSE?

No

Make prediction for one of the
EVSEs

Retrieve all n individual tree
predictions:( )

Yes

duration_passed=prediction_time -
start_occupation

duration_passed? 

Calculate the probability of distinct

values of ( ):
 

No




Yes

Calculate the probability of distinct
values of :


 

No

Prediction with fall-back level

Yes

All EVSEs
predicted?


No

Minimum of remaining durations of
EVSEs 

Yes

Duration is the  that 

Figure 3. The forecast flow in general. The RF model is initially trained. The prediction is then made
for each EVSE separately when a driver wishes to travel to a charging station that is completely full.
All of the EVSEs in the station go through the procedure iteratively, and the results are then combined
to estimate how long the user will have to wait.

The process depicted in Figure 3 is broken down into its component parts and elabo-
rated upon in the following example.

• In the first step, the RF model is trained using the complete historical data of charging
events as well as relevant features, along with 100 estimator trees. The hyperparameter
tuning method is used to determine the number of estimators that the RF model
will have.

• Assume that a driver plans to arrive at a fully occupied charging station with two
EVSEs at time t1, so that they can recharge their battery. As a result, the driver wants
to find out whether or not the station has available EVSEs and, if it does not, how
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much they will have to wait before they can begin charging. Taking into account
the fact that both of the EVSEs are being utilized at the given time t1, the following
method of duration prediction will be carried out on each of the EVSEs separately,
until the charging duration of the running events at each of the EVSEs in the target
station is predicted.

– Consider the time t0 to be the beginning of the charging event that took place at
the EVSE. The duration that the station has been occupied up to this point can be
determined (duration_passed = t1 − t0).

– The trained RF model will be used to make a prediction for the total charging
time that will be required for the charging event. Each of the estimators that
make up the RF model makes a prediction regarding the duration, and the RF
model provides the average of the values that are anticipated. However, we take
the value that was predicted for each tree. ψi represents the outcome of the ith
tree analysis.

– We know how long the EVSE has been occupied and have the results of estimate
tree predictions. Consequently, it is evident that the trees that predicted a duration
shorter than duration_passed are incorrect. To improve the model’s prediction
accuracy, we filtered out the incorrect predictions.

– The charging period of the present event at the EVSE is the median of the predic-
tions made by the remaining, more accurate trees. The median is far less affected
by extreme values than the arithmetic mean. As consumers occasionally remain
at a charging station for far longer than usual, the estimate trees always include
some very lengthy durations that seldom occur. Therefore, the median performs
better than the mean. On the other hand, if the events at a particular station are
likely to be very lengthy, the majority of estimators predict that the duration will
be long, and the median is likewise an accurate representation.
To describe it formally, assume 〈ψ1, ψ2, . . . , ψn〉 represents the ordered list of var-
ious duration estimates given by n estimator trees of RF for a certain charging
event, with ψ1 being the lowest forecast and ψn being the greatest. The unique
prediction values are 〈ψ1, ψ2, . . . , ψm〉 where m ≤ n.
The probability list 〈P1, P2, . . . , Pm〉 represents the likelihood of a unique predic-
tion exceeding the anticipated values. For instance, P1 is the probability that
the duration will be greater than ψ1 and is always 100%. Pk indicates the likeli-
hood that the duration will be at least the expected amount where the median
corresponds to ψk.

– For some charging occurrences, all estimators may have estimated the length to
be shorter than the duration_passed. After filtering out the incorrect estimators,
there would be no remaining estimator results to make the prediction upon.
To predict the charging duration in such instances, models are trained for spe-
cific power levels, and if the station-specific model cannot make a reasonable
prediction, we move to these broader models. The graph shown in Figure 4
depicts the length of time people stayed based on the starting time indicated on
the x-axis. The blue shades indicate the deciles. For events that are longer than
usual, the median of the remaining portion is utilized to predict the duration.
Therefore, if 10 h have passed and that corresponds to 20% of the data, then the
new expected value is the median of the remaining parts, which is the 40% decile
((100%− 20%)/2).

• The remaining wait time at the station is the minimum of the durations determined
for the various EVSEs within the station. The new user is able to begin charging at the
station as soon as one of the EVSEs becomes available.
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Figure 4. The fall-back model of the power level of 25–100 kW. Taken from [10].

RF and LightGBM, two ensemble learning methods, produce promising outcomes
in terms of regression metrics. The sequential ensemble methods cannot be used for the
proposed method of this study, as in the sequential method of gradient boosting, trees are
generated sequentially and each tree is constructed based on the errors of the preceding
tree to enhance the outcomes at each step. Therefore, it is not possible to filter out the
estimators that are intended to improve the outcomes of the succeeding estimator.

Consequently, the key difference between our suggested approach and conventional
RF and LightGBM is that we use the real-time information that becomes available after the
start of the charging event. By removing trees for which we already know the prediction is
wrong, the prediction accuracy can be dramatically improved for long charge events, while
only using information that is actually available at the time of prediction.

3. Results

This section provides a thorough analysis of the results of the prediction approach and
discusses the evaluation results of two different evaluation scenarios. Additionally, in order
to make comparisons, this section compares the prediction model of this paper with two
other prediction models, RF and LightGBM. In order to demonstrate that there has been an
improvement in performance, it is useful to compare the final results with the RF regressor
model, which is the foundation for the prediction approach of this work. In addition, out of
the twenty-four different typical regression models, LightGBM emerged as the one with the
most promising metrics. In order to provide evidence that the proposed model is superior
to the most accurate predictive model when applied to real-world situations, the results of
the prediction are compared to this model.

3.1. Model Results

This section investigates the outcomes of the real-time RF model based on two different
request simulation methods. In both methods, the request intervals of 1, 2, 5, 10, 20, and
30 min are considered, but with two different interpretations.

3.1.1. First Evaluation Scenario

In the first scenario, the user requested to check the availability of a charging point
m minutes prior to the charging point becoming available (as indicated by the m minute
request interval), in other words, m minutes prior to the charging point’s status change, to
determine how accurate the forecasts are just before the change in occupation status.

Figure 5 depicts the first scenario’s results confusion matrices for different request
intervals. The expected and actual values are categorized. The rows represent the actual
categories, while the columns represent the predicted ones. The outcome is normalized
to the actual values (rows). The values on the main diagonal indicate the events whose
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duration category was accurately anticipated. The first statistic of the matrix corresponding
to the request interval of 1 min indicates that 0.49 of the events whose actual occupation
duration was less than 10 min were anticipated to have a duration of less than 10 min. A
request interval of m minutes means that the charging point is occupied m minutes before
it becomes available. Therefore, its actual duration is more than m minutes. This explains
the 0 values above the main diagonal. For example, for a matrix corresponding to a request
interval of 30 min, there are no charging events with actual charging duration less than
30 min.

Figure 5 also depicts that the closer the request is to the end of the charging event,
the more the majority of events concentrate along the main diagonal and fall into their
actual category or one closely related to it. Contrarily, the forecast accuracy decreases with
increased request intervals. This can also be due to the fact that these longer intervals
correspond to longer charging events, and as the majority of events are relatively short at
fast-charging points, the prediction accuracy for these events drops. Among others, we can
see that the majority of the values below the main diagonal are zero. This demonstrates
that the predicted duration of infrequent charging occurrences is shorter than their actual
duration. This behaviour can be considered desirable since long events are seldom.

The lack of accuracy for m = 30 can also be explained by the fact that as most charging
events are short, the models are generally optimised towards short event durations.

Figure 6 shows the error distribution of different request intervals before the end of
charging occupation for the events in the test data. According to the error distributions, the
0 error occurs frequently and is generally negative for lower request intervals, indicating
that expected durations are typically higher than actual durations. The reason for this is
that the approach eliminates the predictions that are shorter than the passed durations. On
the other hand, for longer request intervals, the remaining duration is higher and the passed
duration is shorter. As a result, fewer incorrect predictions are eliminated, increasing the
number of positive errors (predictions less than the real values). These diagrams accurately
show that the longer the passed duration, the higher is the prediction accuracy.

3.1.2. Second Evaluation Scenario

In the second scenario, using the m minute request interval, the user asks to check
whether a charging point is available m minutes before she arrives at the station. As the
users typically seek the availability of a charging station shortly before they arrive, it is of
special importance to assess the performance of the model for short request intervals.

Table 2 shows the comparison of the prediction power of the real-time RF model for
the different request intervals before arrival of the user at the station. Surprisingly, for
longer request intervals, the prediction performance outperforms the shorter request times.
The longer the user checks before arriving at an occupied fast-charging station, the more
probable it is that the station will be available, considering the short charging durations
at fast stations. On the other hand, a different user might show up at the station during
this time and begin charging, resulting in the anticipated vacant station becoming filled.
To confirm this idea, the Table 3 shows the values of the selected evaluation metrics after
removing the charging events for which both the real and predicted statuses are available.
It shows that the prediction performance of the model shortly before arrival of the user is
better than with longer request intervals.

Table 2. Comparison of the predictive power of the real-time RF model at various request intervals
prior to the user’s arrival at the station in minutes.

Request Time MAE RMSE MAD

1 15.70 35.22 8
2 15.50 35.13 8
5 14.76 34.80 8
10 13.31 34.18 5
20 11.74 33.53 0
30 7.54 31.56 0
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Figure 5. Confusion matrices of the prediction results for different request intervals. The labels of the
rows correspond to the real durations and the columns indicate the predicted durations. The results
are normalized over the true values (rows). Note that, although the models are regression models,
we present confusion matrices to show the effect of the real-time components as well as to show for
which types of predicted durations the model is particularly accurate.
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Figure 6. The error distribution of various request window intervals prior to charging occupation’s
termination. The error is computed by the real duration minus predicted duration.

Table 3. Comparison of the predictive power of the real-time RF model at various request intervals
prior to the user’s arrival at the station after removing the events that are available according to both
prediction and real status in minutes.

Request Time MAE RMSE MAD

1 16.98 36.62 10
2 17.48 37.3 10
5 18.48 38.94 11
10 20.28 42.13 12
20 22.79 46.72 14
30 36.28 69.69 20

3.2. Model Comparison

This section compares the approach model’s results to those of the RF regressor and
LightGBM models. This comparison is desired given that the RF regressor is the base for
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the proposed model and LighGBM is the best performing model based on the findings of
comparing the performance of eighteen alternative regression models.

Figure 7 displays the residual plots of the three prediction models of LightGBM, RF,
and the model proposed in this work (real-time RF), respectively, from top to bottom, while
employing both training and testing data sets.

The difference between the observed value of the target variable (actual charging
duration) and the predicted value (predicted charging duration) are known as the residuals.
The predicted values are shown on the x-axis of the residual plots, while the residuals are
shown on the y-axis. The probability density function illustrating the distribution of the
residuals is shown in the histogram on the right side of the figures.

Figure 7. Cont.
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Figure 7. The residual plots of the three prediction models—LightGBM, RF, and real-time RF (top
to bottom, first two on previous page)—using both training and testing data sets are shown. The
residuals’ distribution is depicted in the plots on the right side of each residual plot. Minutes are
used for the residuals and predictions.

Each point in the plots represents a charging event, with the model’s forecast on
the x-axis and the model’s prediction residual shown on the y-axis. How inaccurate the
prediction was for that event is measured by the distance from the line at 0. Positive
numbers for the residual (on the y-axis) for prediction (on the x-axis) indicate a prediction
that was too short, while negative values indicate a prediction that was too long; zero
indicates a prediction that was exactly correct.

These residual plots can be used to examine the regressors’ error. The top and middle
plot in Figure 7 both display a uniform distribution of errors in target variable prediction
above the line at 0, indicating that charging event durations were typically predicted to be
shorter than actual. The low distribution of residuals near 0 indicates that few charging
events were accurately predicted. The reason for this phenomenon probably lies in the way
that such models are typically trained: Long charge events are unusual, but if they happen,
generate a large error. To improve the RMSE, the algorithm decides to put more weight
onto these long events. This, however, leads to the average prediction departing from the
median actual value, thus explaining the observed behaviour.

The bottom plot in Figure 7, on the other hand, depicts a relatively random and
uniform distribution of residuals versus the target. It indicates that the predictive model is
working effectively. The density plot on the right side also reveals that our model’s error
is normally distributed around zero, which shows the model is well fitted. This result is
possible since the real-time approach allows us to handle long charge events differently and
the algorithm consequently does not need to shift away from the median realized value as
much. This demonstrates that the performance of the model’s forecast has improved after
deleting the incorrect estimators of the RF that anticipated the duration to be too short (in
this example, shorter than half of the real duration). This logically caused the distribution
of residuals, which in RF were generally above the line at 0 (shorter than actual duration),
to be centred on 0.

Negatively, the real-time RF model’s highest residual (bottom plot in Figure 7) is
bigger than the RF model’s prediction (middle plot in Figure 7). These high residuals
cannot go above fifty percent of the real duration. As a consequence of this, it is clear that
these significant errors correspond to charging events with a particularly lengthy charging
duration. On the density plot, it is evident that the density of these points is not high.
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4. Discussion

In this paper, we set out to explore how machine learning models can be used to
predict how long a charge point will remain occupied. By comparing a total of eighteen
models and creating our own custom model based on these findings, we are able to show
the concept for an accurate machine learning model structure for the task at hand.

In terms of accuracy and overall performance of predictions, the recommended pre-
diction approach is superior to other regression models, as previously demonstrated. In
total, we analysed eighteen different regression models that are often used. In particular, it
outperforms the two models of ensemble learning that are the best-forming models, Light-
GBM and RF. Because the forecast was constructed based on the results of the RF regressor
model, it is still subject to the constraints that are associated with RF. In the following, this
section discusses a number of limitations related to the evaluation and the model.

It was necessary to replicate real-time requests from consumers to approach already
occupied charging stations in order to examine the suggested model. We implemented
the simulation requests for the evaluation to take place. We evaluated the model based
on two different prediction scenarios with two different assumptions. In the first scenario,
we proved that there is a positive correlation between the amount of time that has elapsed
from the charging events and the precision of predictions. This, however, comes with a
shortcoming. This means if the user requests for the duration prediction of an occupied
charging event at the beginning of the event, the prediction is not precise. In the second
evaluation scenario, we predicted the status of the charging points at m minutes before
arrival of the user at the station. In this scenario, the evaluation metrics show that the
longer before the arrival users ask for the prediction, the more accurate is the prediction.
This shows another disadvantage of the model. When the users ask for the status prediction
of a charging point long before their arrival, the model predicts the end of the current
charging event and predicts that the charging point will be available afterwards. However,
in real-world scenarios, the end of the current charging event does not mean that the
charging point will be available at the time that the user arrives, since the charging point
can be occupied by another user. In a real-world application, the proposed model would
consequently have to be coupled with a model that predicts the likelihood of somebody else
arriving in the meantime. Such a structure is proposed in [28] using the model proposed in
this paper as well as the one from our previous publication [5] as a basis.

Another shortcoming is that the extremely long charging events are anticipated to be
shorter than their real duration, despite the fact that the model performs well for short and
moderately long charging events. This is because the algorithm has difficulty projecting
extremely long charging events. These occurrences are likely to be outliers in the data;
yet, customers require accurate information regarding the availability of charging stations
and thus they expect the model to make accurate predictions in real-world scenarios. This
could possibly have a significant effect on the consumers’ choice of charging station and
the amount of time they wait. Therefore, accurate prediction of lengthy charging events in
applications that take place in the real world is of critical relevance. The issue is somewhat
less problematic at charging stations with many EVSEs, since the likelihood of many
extraordinarily long charge events at a singular station is extremely low.

We shuffled the data in order to divide it into a training set and a test set to avoid
overfitting. A key reason for shuffling was that the coronavirus pandemic and the uptake
of e-mobility at the same time resulted in a change of usage patterns over the observed
time. By setting the overall time interval such that charging events occur at various times,
this lessens bias. The training data now contains certain events that happened after some
events in the test data as a result of this shuffling, which is a drawback, because the model
in this case has knowledge about the future.

In real-time use cases, reducing the amount of delay experienced when serving pre-
dictions is absolutely essential, as the predicted action must take place immediately. The
client only needs to send in one charging station in order to accomplish online forecasting.
This user anticipates that the prediction will become available in less than a few millisec-
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onds. In general, there are two different kinds of latency: one that occurs at the model
level, and another that occurs at the serving level (https://cloud.google.com/architecture/
minimizing-predictive-serving-latency-in-machine-learning, accessed on 17 December
2022). At the model level, latency is determined by the amount of time needed by the
model in order to provide predictions. At the serving level, it depends on the amount
of time that the system needs in order to provide the forecast in response to a request.
Although the model’s predictions are produced at a reasonable speed, in order to live
up to the users’ expectations for applications that take place in the real time, the model’s
processing speed should be increased.

5. Conclusions

In conclusion, this paper aimed to construct a short-term prediction model for charging
events that incorporates real-time information for improved accuracy. The results of the
study showed that the proposed model can provide accurate predictions; however, there
are several limitations that need to be addressed before the model can be implemented in
real-world scenarios.

Firstly, the model assumes that the available charging stations will be available until
the user who intends to drive to the station arrives. This assumption does not always hold
true in real-world scenarios, as a fully available charging station with two charging points
can be occupied within a few minutes. Therefore, the model needs to take into account the
real-time availability of charging stations.

Secondly, although the model’s predictions are generated at a good speed, the model’s
processing speed should be enhanced to meet user expectations for applications that occur
in real time. This is especially important for applications where users expect real-time
predictions and might not be willing to wait for the model’s predictions.

Thirdly, the model should be trained periodically so that it can adapt to changing
trends and patterns. The data used in this study correspond to the charging events from
1 January 2021 to 1 January 2022. As the charging patterns and infrastructure are con-
stantly evolving, the model needs to be trained with updated data to ensure its predictions
remain accurate.

Finally, it is important to note that the data used in this study are specific to Germany
and the results of the study may not generalize to other countries or regions. Therefore,
further research is needed to evaluate the model’s performance in other locations.

In summary, this study proposed a short-term prediction model for charging events
that incorporates real-time information to improve accuracy. The model has the potential
to be applied in both densely populated and remote areas, but further development is
needed to make it suitable for real-world scenarios. The limitations of the model include
the assumption of charging station availability and the need for enhanced processing speed,
as well as the need for periodic retraining with updated data.

Author Contributions: Conceptualization, R.A., C.H. and F.S.; Methodology, R.A. and C.H.; Software,
R.A.; Validation, R.A., C.H. and F.S.; Formal analysis, R.A.; Investigation, R.A.; Resources, C.H., J.F.,
M.J. and D.U.S.; Data curation, R.A. and C.H.; Writing—original draft, R.A.; Writing—review and
editing, C.H., F.S., J.F. and M.J.; Visualization, R.A.; Supervision, C.H., F.S., M.J. and D.U.S.; Project
administration, C.H., J.F. and D.U.S.; Funding acquisition, C.H., J.F. and D.U.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Federal Ministry for Economic Affairs and Climate Action
(BMWK) on the basis of a decision by the German Bundestag, grant number 01MV20001A.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The data used in this project is protected by copyright and cannot be
shared. A reader willing to reproduce our results is advised to contact a data broker that has the
permission to share the occupation data of public charging stations in Germany.

https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-machine-learning
https://cloud.google.com/architecture/minimizing-predictive-serving-latency-in-machine-learning


Electricity 2023, 4 151

Acknowledgments: We would like to extend our gratitude to the industry partners Hubject and
SMART/LAB both for data provision as well as for guidance during the development of this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RF Random forest
LightGBM Light gradient boosting machine
EV Electric vehicle
EVSE Electric vehicle supply equipment

Appendix A

Metric Descriptions

In this section the metrics for regression tasks are discussed.
The MAE is an indicator of the average absolute divergence between the predicted

values and the true values (charging duration). The error’s unit is indicated in minutes.
Real charging duration of the event i is shown with yi and the predicted duration of the
same event is ŷi, and n is the number of observations.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (A1)

The MSE identifies the average squared difference between the real duration and
predicted duration. The MSE is equal to 0 when a model is error-free. Its value increases
with the increase in the model error.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (A2)

The RMSE is defined as the residuals’ standard deviation. Large residuals (y − ŷ)
are penalized by the RMSE by using the square of the error value. Therefore, the greater
the deviation between a charging duration prediction and the actual charging length, the
greater the penalty. Errors are indicated in minutes.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (A3)

The percentage of the variance in the dependent variable that can be predicted from
the independent variable(s) in a regression model is depicted by the R-squared (R2) metric,
which is a statistical measure. In other words, it calculates the percentage of the observed
data’s variation that the model can account for.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (A4)

Root mean squared logarithmic error (RMSLE) is a metric used to evaluate the perfor-
mance of regression models, particularly when you have a lot of varying magnitudes in the
target variable. It is similar to the root mean squared error (RMSE), but the logarithm of the
predictions and true values are used instead of the actual values. The formula for RMSLE is

RMSLE =

√
1
n

n

∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (A5)
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Mean absolute percentage error (MAPE) is a commonly used metric for evaluating the
performance of regression models. It measures the average percentage difference between
the predicted values and the true values. The formula for MAPE is

MAPE =
100
n

n

∑
i=1

|yi − ŷi|
yi

(A6)
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